Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1273372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869488

RESUMO

An experiment was conducted to evaluate the dietary supplementation with lysozyme's impacts on laying performance, egg quality, biochemical analysis, body immunity, and intestinal morphology. A total of 720 Jingfen No. 1 laying hens (53 weeks old) were randomly assigned into five groups, with six replicates in each group and 24 hens per replicate. The basal diet was administered to the laying hens in the control group, and it was supplemented with 100, 200, 300, or 400 mg/kg of lysozyme (purity of 10% and an enzyme activity of 3,110 U/mg) for other groups. The preliminary observation of the laying rate lasted for 4 weeks, and the experimental period lasted for 8 weeks. The findings demonstrated that lysozyme might enhance production performance by lowering the rate of sand-shelled eggs (P < 0.05), particularly 200 and 300 mg/kg compared with the control group. Lysozyme did not show any negative effect on egg quality or the health of laying hens (P > 0.05). Lysozyme administration in the diet could improve intestinal morphology, immune efficiency, and nutritional digestibility in laying hens when compared with the control group (P < 0.05). These observations showed that lysozyme is safe to use as a feed supplement for the production of laying hens. Dietary supplementation with 200 to 300 mg/kg lysozyme should be suggested to farmers as a proper level of feed additive in laying hens breeding.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37632755

RESUMO

Neutering is a significant risk factor for obesity in dogs. Changes in gut microbiota and its metabolites have been identified as a key player during obesity progression. However, the mechanisms that promote neuter-associated weight gain are not well understood. Therefore, in this study, sixteen clinically healthy Beagle dogs (6 male and 10 female, mean age = 8.22 ±â€…0.25 mo old) were neutered. Body weight (BW) and body condition score (BCS) were recorded at 1 d before neutering, 3, 6, 10, 16, and 21 mo after neutering. Dogs were grouped based on their BCS as ideal weight group (IW, n = 4, mean BW = 13.22 ±â€…1.30 kg, mean BCS = 5.00 ±â€…0.41) and obese group (OB, n = 12, mean BW = 18.57 ±â€…1.08 kg, mean BCS = 7.92 ±â€…0.82) at 21 mo after neutering. Serum lipid profile, glucose, and hormones and fecal microbiota and short-chain fatty acids (SCFAs) were measured. Our results showed that OB dogs had greater (P < 0.0001) BW (18.57 vs. 13.22 kg), BCS (7.92 vs. 5.00), and average daily gain (12.27 vs. 5.69 g/d) than IW dogs at 21 mo after neutering, and the obesity rate was up to 60%. In addition, significant increases (P < 0.05) in serum triglyceride (TG, 1.10 vs. 0.56 mmol/L) and high-density lipoprotein cholesterol (HDL-C, 6.96 vs. 5.40 mmol/L) levels and a significant decrease (P < 0.05) in serum adiponectin (APN, 54.06 vs. 58.39 µg/L) level were observed in OB dogs; serum total cholesterol (4.83 vs. 3.75 mmol/L) (P = 0.075) and leptin (LEP, 2.82 vs. 2.53 µg/L) (P = 0.065) levels tended to be greater in OB dogs; there was a trend towards a lower (P = 0.092) APN/LEP (19.32 vs. 21.81) in OB dogs. Results of fecal microbial alpha-diversity showed that Observed_species and Chao1 indices tended to be lower (P = 0.069) in OB dogs. The STAMP and LEfSe analyses revealed that OB dogs had a greater (P < 0.05 and LDA > 2) reduction in relative abundances of Bacteroides, Prevotella_9, and Megamonas than IW dogs. In addition, OB dogs also had greater (P < 0.05) reduction in fecal acetate, propionate, and butyrate concentrations than IW dogs. Moreover, clear negative correlations (|r| > 0.5 and P < 0.05) were found between SCFAs-producing bacteria and BW, TG, and HDL-C. The functional predictions of microbial communities based on PICRUSt2 analysis revealed that lipid metabolism and endocrine system were significantly disturbed in obese dogs after neutering. Thus, intervention with SCFAs-producing bacteria might represent a new target for the prevention or treatment of canine obesity after neutering. Moreover, weight control before neutering may also contribute to the prevention of canine obesity after neutering.


Neutering contributes to canine obesity risk. In this study, obesity rate of 60% at 21 mo after neutering was observed. Obese dogs had greater serum triglyceride, total cholesterol, high-density lipoprotein cholesterol, and leptin levels and lower adiponectin level than ideal weight dogs. In addition, fecal microbiota analysis found a decreasing microbial diversity in obese dogs, and decreasing SCFAs-producing bacteria Megamonas, Bacteroides, and Prevotella_9 in obese dogs resulted in lower production of fecal acetate, propionate, and butyrate. Importantly, strong negative correlations between SCFAs-producing bacteria and body weight, TG, and HDL-C revealed that SCFAs-producing bacteria are involved in the process of canine obesity after neutering. Thus, intervention with SCFAs-producing bacteria may be a target for the prevention or treatment of canine obesity after neutering. Moreover, weight control before neutering may also contribute to the prevention of canine obesity after neutering.


Assuntos
Doenças do Cão , Microbioma Gastrointestinal , Cães , Animais , Masculino , Feminino , Obesidade/veterinária , Obesidade/metabolismo , Ácidos Graxos Voláteis , Fatores de Risco , Fezes/microbiologia , Bactérias , Colesterol , Doenças do Cão/microbiologia
3.
Animals (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37106863

RESUMO

Dietary changes are inevitable for pets, yet little is known about the impact of different dietary change methods on the gastrointestinal response. The current comparative study evaluated the effects of different dietary changes on the diarrheal symptoms, fecal fermentation characteristics, microbiota, and metabolic profile of healthy puppies. A total of 13 beagle puppies were randomly divided into two groups; puppies in the abrupt change (AC) group were given 260 g of a chicken- and duck-based extruded diet (CD)daily for the one-week transition period, whereas puppies in the gradual transition (GT) group were fed according to a gradual transition ratio of a salmon-based extruded diet (SA) and a CD diets with a difference of 40 g per day for seven consecutive days. Serum samples were collected on D7, and fecal samples were collected on D0 and D7. The results indicated that GT reduced the incidence of diarrhea in puppies throughout the trial period. Dietary change methods had no influence on serum inflammatory factors or fecal SCFAs, but isovaleric acid was significantly reduced after GT. Meanwhile, 16S rRNA sequencing showed that the fecal microbiota was changed after different dietary changes. Compared with the bacterial changes after AC, the relative abundances of beneficial bacteria (i.e., Turicibacter and Faecalibacterium) in feces were increased after GT in puppies. Additionally, both GT and AC caused changes in amino acid metabolism, while AC also altered lipid metabolism. AC increased fecal histamine and spermine concentrations, but decreased concentrations of metabolites such as 5-hydroxyindoleacetic acid and serotonin. Our findings indicated that GT most likely reduced the diarrhea rate in puppies by modulating the composition and metabolism of the gut microbiota.

4.
Metabolites ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984766

RESUMO

Transportation is common in cats and often causes stress and intestinal disorders. Antimicrobial peptides (AMPs) exhibit a broad spectrum of antibacterial activity, and they may have the capacity for antioxidant and immune regulation. The objective of this study was to investigate the effects of dietary supplementation with AMPs on stress response, gut microbiota and metabolites of cats that have undergone transport stress. A total of 14 Ragdoll cats were randomly allocated into 2 treatments: basal diet (CON) and a basal diet supplemented with 0.3% AMPs. After a 6-week feeding period, all cats were transported for 3 h and, then, fed for another week. The results show that the diarrhea rate of cats was markedly reduced by supplementation with AMPs throughout the trial period (p < 0.05). In addition, AMPs significantly reduced serum cortisol and serum amyloid A (p < 0.05) and increased apolipoprotein 1 after transportation (p < 0.05). Moreover, AMPs reduced the level of inflammatory factors in the serum caused by transportation stress, including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) (p < 0.05). The AMPs enhanced the activities of glutathione peroxidase (p < 0.01) and superoxide dismutase (p < 0.05). Furthermore, cats fed AMPs had higher levels of branched chain fatty acids (BCFAs) and a relative abundance of Blautia and a lower relative abundance of Negativibacillus after transportation (p < 0.05). The serum metabolome analysis further revealed that AMPs markedly regulated lipid metabolism by upregulating cholic acid expression. In conclusion, AMP supplementation alleviated oxidative stress and inflammatory response in transportation by regulating the gut microbiota and metabolites, thereby relieving stress-induced diarrhea and supporting gut and host health in cats.

5.
Front Immunol ; 12: 813890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095912

RESUMO

Early-life exposure to environmental stress disrupts the gut barrier and leads to inflammatory responses and changes in gut microbiota composition. Gallic acid (GA), a natural plant polyphenol, has received significant interest for its antioxidant, anti-inflammatory, and antimicrobial properties that support the maintenance of intestinal health. To assess whether dietary supplementation of GA alleviates environmental stress, a total of 19 puppies were randomly allocated to the following three dietary treatments for 2 weeks: 1) basal diet (control (CON)); 2) basal diet + transportation (TS); and 3) basal diet with the addition of 500 mg/kg of GA + transportation (TS+GA). After a 1-week supplementation period, puppies in the TS and TS+GA groups were transported from a stressful environment to another livable location, and puppies in the CON group were then left in the stressful environment. Results indicated that GA markedly reduced the diarrhea rate in puppies throughout the trial period and caused a moderate decline of serum cortisol and HSP-70 levels after transportation. Also, GA alleviated the oxidative stress and inflammatory response caused by multiple environmental stressors. Meanwhile, puppies fed GA had a higher abundance of fecal Firmicutes and Lactobacillus and lower Proteobacteria, Escherichia-Shigella, and Clostridium_sensu_stricto_1 after transportation. As a result, the TS+GA group had the highest total short-chain fatty acids and acetic acid. Also, the fecal and serum metabolomics analyses revealed that GA markedly reversed the abnormalities of amino acid metabolism, lipid metabolism, carbohydrate metabolism, and nucleotide metabolism caused by stresses. Finally, Spearman's correlation analysis was carried out to explore the comprehensive microbiota and metabolite relationships. Overall, dietary supplementation of GA alleviates oxidative stress and inflammatory response in stressed puppies by causing beneficial shifts on gut microbiota and metabolites that may support gut and host health.


Assuntos
Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Microbiota/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fatores Etários , Ração Animal , Animais , Biomarcadores , Cães , Meio Ambiente , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA